

ARSET

Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

0NASAARSET

Overview of Soil Moisture Active Passive (SMAP) Applications

Erika Podest and Amita Mehta

Learning Objectives

By the end of this presentation, you will be able to explain how SMAP can apply to different events:

- weather prediction
- floods
- drought
- crop yield
- human health

Outline

- 1. SMAP Early Adopter Program
- 2. Samples of SMAP Data Applications

SMAP Applications

The SMAP mission is in the first tier recommended by the 2007 National Research Council (NRC) Earth Science Decadal Survey

Incorporating applications into mission plans is **not optional**, but rather:

- 1) is mandated from Congress with the NASA authorization act
- 2) is recommended as a requirement from the National Research Council
- 3) is a critical component of the SMAP Applied Sciences activities, and
- 4) quickly became a measure for the mission's success

What is an application?

- Application: innovative use of mission data products in <u>decision-making activities for societal benefit</u>
- Application Research: provides <u>fundamental</u> <u>knowledge</u> of how mission data products can be scaled and integrated into <u>users</u>' activities to improve decision-making efforts
- The user community includes individuals or groups:
 - from the public or private sector
 - from national or international organizations
 - with decision-making on a local to global scale

SMAP Early Adopters

• The Early Adopters (EA) are a subset of the mission user community

• A volunteer effort that links the EA to the SMAP science team to trade ideas, guidance, and feedback in an effort to understand the applications of SMAP

data

SMAP Applications Early Adopters

SMAP Early Adopters*, SMAP project contacts, and applied research topics. Many Early Adopters cross multiple applications.					
Early Adopter PI and institution SMAP Contact	Applied Research Topic				
	4. Fananatia				
Weather and Climate Forecasting					
* Stephane Bélair, Meteorological Research Division, Environment	Assimilation and impact evaluation of observations from the				
Canada (EC); SMAP Contact: Stephane Bélair	SMAP mission in Environment Canada's Environmental Prediction Systems				
* Lars Isaksen and Patricia de Rosnay, European Centre for					
	Monitoring SMAP soil moisture and brightness temperature at ECMWF				
Medium-Range Weather Forecasts (ECMWF); SMAP Contact: Eni	ECMWF				
Njoku	Titi				
* Xiwu Zhan, Michael Ek, John Simko and Weizhong Zheng,	Transition of NASA SMAP research products to NOAA				
NOAA National Centers for Environmental Prediction (NCEP), NOAA National Environmental Satellite Data and Information	operational numerical weather and seasonal climate predictions				
Service (NOAA-NESDIS); SMAP Contact: Randy Koster	and research hydrological forecasts				
* Michael Ek, Marouane Temimi, Xiwu Zhan and Weizhong	Integration of SMAP freeze/thaw product line into the NOAA				
Zheng, NOAA National Centers for Environmental Prediction	NCEP weather forecast models				
(NCEP), NOAA National Environmental Satellite Data and	NCEF weather forecast models				
Information Service (NOAA-NESDIS), City College of New York					
(CUNY): SMAP Contact: Chris Derksen					
* John Galantowicz, Atmospheric and Environmental Research, Inc.	Use of SMAP-derived inundation and soil moisture estimates				
(AER); SMAP Contact: John Kimball	in the quantification of biogenic greenhouse gas emissions				
♦ Jonathan Case, Clay Blankenship and Bradley Zavodsky,	Data assimilation of SMAP observations, and impact on				
NASA Short-term Prediction Research and Transition (SPoRT)	weather forecasts in a coupled simulation environment				
Center; SMAP Contact: Molly Brown	weather forecasts in a coupled simulation environment				
Droughts and Wildfires					
* Jim Reardon and Gary Curcio, US Forest Service (USFS);	The use of SMAP soil moisture data to assess the wildfire				
SMAP Contact: Dara Entekhabi	potential of organic soils on the North Carolina Coastal Plain				
* Chris Funk, Amy McNally and James Verdin, USGS & UC	Incorporating soil moisture retrievals into the FEWS Land				
Santa Barbara; SMAP Contact: Molly Brown	Data Assimilation System (FLDAS)				
♦ Brian Wardlow and Mark Svoboda, Center for Advanced Land	Evaluation of SMAP soil moisture products for operational				
Management Technologies (CALMIT), National Drought Mitigation	drought monitoring: potential impact on the U.S. Drought				
Center (NDMC); SMAP Contact: Narendra Das	Monitor (USDM)				
♦ Uma Shankar, The University of North Carolina at Chapel Hill –	Enhancement of a Bottom-up Fire Emissions Inventory Using				
Institute for the Environment; SMAP Contact: Narendra Das	Earth Observations to Improve Air Quality, Land Management,				
•	and Public Health Decision Support				
Floods and Landslides					
* Fiona Shaw, Willis, Global Analytics; SMAP Contact: Robert	A risk identification and analysis system for insurance; eQUIP				
Gurney	suite of custom catastrophe models, risk rating tools and risk				
	indices for insurance and reinsurance purposes				

SMAP Early Adopters Post-Launch

SMAP Mission Applications Themes				
Weather and Forecasting (5 EAs)	Agricultural Productivity (11 EAs)			
Droughts (9 EAs)	Human Health (5 EAs)			
Floods (7 EAs)	National Security/Mobility (3 EAs)			
Carbon (1 EA)				
SMAP Mission Applications Themes				
National Security-Sea Ice (5 EAs)	Decision Support/Communication Tools (6 EAs)			

- Each EA will provide clear metrics and an analysis of the value of soil moisture or freeze/thaw data for their application
 - EA case study per EA category
- EAs given the opportunity to apply for access to pre-beta-release products for their research

Impact of SMAP on Weather Prediction

Assimilating SMAP soil moisture from August 1-10, 2015, **reduced the warm biases** of the Global Forecast System 7-day forecasts of 2-meter air temperature

SMAP Data Assimilation for Weather Prediction Eastern United States, April 1, 2016

Global Applications of Soil Moisture for Flooding

- Evaluate global scale run off models with climate models
- Evaluate scenarios at the global scale using soil moisture data
- Evaluate the scale of data needed for decision making

Flood Mitigation in Central Italy

Research Institute for Geo-Hydrological Protection, Luca Brocca

Hurricane Power Outage Prediction

- Prediction of Power Outages for Sandy Wind Field
 - With modeled soil moisture:
 15,989,091 people affected
 - With SMAP soil moisture:16,327,051 people affected
- Outage predictions are sensitive to soil moisture
- Using SMAP data has a significant impact on predictions of people affected by outages

Drought Monitoring

- USGS conducts drought monitoring in areas dominated by grasslands and shrublands
- SMAP showed a reliable and expected response by capturing seasonal soil moisture dynamics in relation to:
 - precipitation
 - land surface temperature
 - evapotranspiration

U.S. Geological Survey, Manohar Velpuri, Jeff Morisette

Famine Early Warning System (FEWS) in Africa

SMAP images will be introduced to FEWS analysts for better famine prediction

FEWS reports drought in Ethiopia but higher than average Sep rain

SMAP sees moderatelyto-very wet soil.

USGS & UC Santa Barbara, Chris Funk, Amy McNally, and James Verdin

Improving Forest Fire Risk Maps

Barcelona Expert Center, ICM/CSIC, UPC, Maria Piles

USDA Global Crop Assessment Decision Support

Model + Satellite

Artifact corrected with satellite imagery for better variability

NASA and USDA, John Bolten, Iliana E. Mladenova, Wade Crow, and Curt Reynolds

AAFC Production Risk Assessment

Routine Mapping of Soil Moisture Anomalies

Soil Moisture Ratings for Alberta 2015

	March 30 - April 1	April 13 - April 26	April 27 - May 10	May 11 - May 24		
Central	2.87	-3.31	-3.43	-3.41		
COUNTY OF PAINTEARTH NO. 18	5.69	-2.69	-4.46	-4.15		
COUNTY OF STETTLER NO. 6	2.54	-3.62	-2.90	-3.39		
KNEEHILL COUNTY	4.42	-3.03	-2.00	-1.56		
LACOMBE COUNTY	-0.85	-7.03	-3.10	-3.75		
MOUNTAIN VIEW COUNTY	-0.04	-9.00	-7.23	-4.00		
MUNICIPAL DISTRICT OF ACADIA NO. 34	2.87	-2.08	-4.30	-7.52		
RED DEER COUNTY	1.54	-5.43	-2.94	-2.94		
ROCKY VIEW COUNTY	0.05	-3.18	-4.58	-1.62		
SPECIAL AREAS NO. 2	4.53	-1.29	-3.99	-5.26		
SPECIAL AREAS NO. 3	5.15	-1.46	-4.24	-4.34		
SPECIAL AREAS NO. 4	6.42	1.37	-0.64	-0.31		
STARLAND COUNTY	4.77	-1.91	-1.23	-3.10		
WHEATLAND COUNTY	0.20	-3.67	-3.04	-2.40		
Northeast	3.78	-2.01	-2.35	-1.13		
BEAVER COUNTY	2.76	-2.79	-1.80	-1.22		
CAMROSE COUNTY	3.87	-3.86	-1.77	-1.01		
COUNTY OF MINBURN NO. 27	3.12	-2.63	-2.25	-1.68		
COUNTY OF ST. PAUL NO. 19	2.94	-1.93	-2.62	-1.68		
COUNTY OF TWO HILLS NO. 21	7.55	-2.00	-2.53	-1.95		
COUNTY OF VERMILION RIVER	0.23	-1.11	-4.15	-2.30		

Assessment of Production Risk Conditions Every Two Weeks

Green/Yellow/Orange/Red is a continuum of 'No significant risk' to 'Large or Urgent risk'. Text in black indicates the event is currently occurring; gray text highlights risk.

Agriculture and Agri-Food Canada, Catherine Champagne, Patrick Cherneski

SMAP for Agricultural Crop Yield and Food Security Applications

- Water is the defining link between climate and agriculture
- Better quality and use of soil moisture and water information leads to:
 - improved agricultural drought decision support systems
 - ensures food security

Courtesy of Narendra Das - JPL

SMAP for Agricultural Crop Yield and Food Security Applications

- Water is the defining link between climate and agriculture
- Better quality and use of soil moisture and water information leads to:
 - improved agricultural drought decision support systems
 - ensures food security

Ines, Das et al., 2013. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction. RSE-D-12-00872R2: Remote Sensing of Environment, In Press

24

Mapping of the Extent of Saharan Dust Emissions

Soil Moisture from ESA SMOS Observatory

- As soil moisture values increase, the dust emission decreases.
- With satellite estimates of soil moisture, dust predictions improved by up to 50%

Masdar Institute, UAE, Hosni Ghedira, and Imen Gherboudj

USDA Crop Condition Report

USDA NASS VegScape Visualization, Analytics, and Dissemination Tool

Soil Moisture Statistics for South Dakota July 22, 2015

Military Vehicle Mobility

- White denotes areas identified as go mobility for four vehicle types
- With SMAP, we are better able to predict mobility of vehicles in Central Indonesia
- NATO Reference Mobility Model is the basis for the calculations

Lockheed Martin, Derek Ward

Load-Bearing Capacity of Soils for Building Roads

Google Earth Engine Analysis Platform

Screenshot of a SMAP L3 Soil Moisture Data Product Within the Google Earth Engine Platform

SMAP Radar for Operational Sea Ice Monitoring

SMAP L-band provides additional information about sea ice formation than the typical C-band data stream

RADARSAT-2

SMAP

Canadian Ice Service, Matt Arkett

SMAP-Ice: Retrieval of Sea Ice Thickness (SIT)

- SMAP map has smoother contours and less radio frequency interference (RFI)
- Differences occur mainly at edges to open ocean and thicker ice areas, probably due to different overflight times and footprint geometries

*ESA Soil Moisture and Ocean Salinity (SMOS)

